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1 | INTRODUCTION

The internal disorder of d-dimensional guantum mechanical nonrelativistic systems is conditioned by the spatial spreading/complexity of their
Schrodinger single-particle probability density p(T'), reRy.2? To best quantify it, three composite information-theoretic measures (the Fisher-
Shannon, Lopezruiz-Mancini-Calvet [LMC], and Cramer-Rao complexities)[:"“] and various generalizations (eg, the complexities of Fisher-Rényi
and LMC-Rényi type) have been proposed beyond the single dispersion (the statistical variance) and information-theoretic measures (the Fisher
information and the Shannon entropy) and their extensions (eg, the entrapies of Rényi and Tsallis type).™! The latter measures are given as
Vgl = (®) —(r}2 r=| ¥ |, for the variance and

Rd,r)[ rlogp(r)dr (1)

for the Fisher and Shannon information-theoretic entropies,[°'7] respectively. The symbol ¥4 denotes the d-dimensional gradient operator. These
measures quantify a single facet of the density p( r') of local (Fisher) or global (variance, Shannon) character, such as the concentration around the
mean value (variance), the gradient content {Fisher information), and the total extent {Shannon entropy) of the density. They have been shown to
be very useful in numerous scientific areas, particularly in identifying and characterizing many atomic, molecular, and chemical phenomena, such
as correlation properties, level avoided crossings of atoms in external electromagnetic fields, and transition states and other stationary points in
chemical reactions.[#-12]
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The composite information-theoretic measures have been recently shown to be the most appropriate to describe the intrinsic complexity of the
quantum systems and to distinguish among their rich three-dimensional geometries, mainly because they jointly grasp different facets of their intemal
disorder. This is basically because (a) they are dimensionless; (b) they are invariant under replication (LMC), translation, and scaling transformations;
and (c) they have, under certain mathematical conditions, minimal values for both extreme cases: the completely ordered systems (eg, a Dirac delta dis-
tribution and a perfect crystal in one and three dimensions) and the totally disordered systems (eg, an uniform or highly flat distribution and an ideal
gas in one and three dimensions). The basic composite information-theoretic measures have the following two-ingredient expressions

Cumclp] =% x Ld (7)) a7, Ceslp] =Flo)x T}me%‘ﬁ 2)

23141 15:16]

for the Lopezruiz-Mancini-Calvet (LM and the Fisher-Shannon complexities Ces[p] respectively, and

Cerlp] = Flp] x Vo] 3

for the Crdmer-Rao complexity.[”] Note that the LMC complexity measures the density nonuniformity through the combined effect of its total
spreading and average height, while the Fisher-Shannon complexity grasps the oscillatory nature of the density together with its total extent in the
configuration space, and the Cradmer-Rao quantity takes into account the gradient content of the density along with its concentration around the
centroid. The Cramer-Rao complexity measure occupies a special position among the intrinsic two-product complexity quantifiers of the internal dis-
order of the quantum systems. Indeed, it is the ONLY one that measures the localization of the probability density around its nodes (as given by the
Fisher information) along with the concentration around the mean (as given by the variance). The variance measures an average of distances of out-
comes of the probability distribution from the mean. Although the Shannenentropy, the disequilibrium, the Rényi entropies (which are components
of the other two-product complexities), and the variance are measures of dispersion and uncertainty, the lack of a simple relationship between order-
ings of a distribution by these entropy-like and variance measures emanates from quite substantial and subtle differences. Both entropy-like and var-
iance measures reflect concentration, but their respective metrics for congentration are different. Unlike variance, which measures concentration
around the mean, entropy-like measures quantify diffuseness of the density irespective of the location(s) of concentration.

The study of the internal disorder for the confined multidimensional quantum systems by means of entropy- and complexity-like measures is
an area that has received increasing momentously per se (the confinement effects on the charge and momentum distributions of the quantum sys-
tems are not yet well established) because of the growing number of relevant applications in numerous fields of science and engineering, from
surface chemistry to quantum technologies, where, for example, confined-atoms have been recently suggested as building elements of qubits. This
is illustrated by the various reviews/states-of -the-art that have appeared in the last few years,18-2%

Here, we are interested in the electronic complexity of the spherically confined two-dimensional hydrogen atom {in short, 2D-HA), both in
position and momentum spaces. This atom is the prototype that has been used to interpret numerous phenomena and systems in surface

[22-24] semiconductors (see, eg, Li et al?), quantum dots,?*®"] atoms and molecules embedded in nanocavities (eg, fullerenes, helium

31-33

chemistry,
[18,19.21,28-30] - . PP . ) [ 1 .
droplets, ...), dilute bosonic and fermionic systems in magnetic traps of extremely low temperatures, and a variety of quantum-

[3435] Up until now, contrary to the stationary states of the confined 3D-HA, where both the (energy-dependent)
[27,36-45]

information elements.
spectroscopic and the (eigenfunction-dependent) information-theoretie properties have received much attention, the knowledge of these
properties for the confined 2D-HA is quite scarce.**=>® Just recently, the authors have determined®" the entropy-like (Shannon, Fisher) and
complexity-like (Fisher-Shannon, LMC) measures for a few low-lying stationary states of the confined 2D-HA. The aim of this work is to extend
this informational approach by means of the calculation of the confinement dependence of the variance and the Cramer-Rao complexity measure
for the 1s, 2s, 2p and 3d quantum states of the 2D-HA in the two conjugated spaces.

The structure of this work is as follows. In Section 2, we first analytically discuss the eigenvalue free (unconfined) d-dimensional hydrogen
problem from an informational point of view, with application to the 1s, 25, 2p, and 3d states of the free two-dimensional case. In Section 3, the
computational method to solve the eigenvalue confined two-dimensional hydrogen problem is described, and the probability densities that char-
acterize the stationary states of this system are given in both position and momentum spaces. In Section 4, we calculate and discuss the variance,
the Fisher information, and the Crdmer-Rao complexity of these densities in both conjugated spaces for various stationary states of the confined
2D-HA. Therein, it is explicitly shown how the values of these quantities progress toward the corresponding free constant values analytically
found in Table 1 of Section 2, which is a further check of our results. Finally, some concluding remarks are made.

2 | THE EIGENVALUE D-DIMENSIONAL HYDROGEN PROBLEM: AN INFORMATIONAL
APPROACH

In this section, we briefly describe the analytical solution of the nonrelativistic eigenvalue problem for the free (ie, unconfined) d-dimensional
hydrogen atom in both position and momentum spaces. The main purpose of this section is to analytically obtain the expressions of the variance
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for various low-lying states of the free 1s 01250 1.5326 16.0000 15000 2.0000 2.2989
2D-HA in position and momentum 5 2.3750 0.2902 1.7777 58.2000 42220 16.8896
spaces p 2.2500 0.0975 0.5925 18.0000 1.3331 1.7550
d 9.3750 0.0245 0.1280 62.5000 1.2000 1.5312

and the Fisher information of the free two-dimensional hydrogen atom and their corresponding products, which give the Crdmer-Rao complexity
measures in the two conjugated spaces as shown in Table 1 for various low-lying states. They will be used in Section 4 to check the validity of
our confined complexity results when confinement becomes weaker and weaker. The resulting electron probability densities are used to deter-
mine the dispersion and Fisher information measures of the (ns) and circular states of this system in a rigorous way, with applications to the 1s, 2s,
2p, and 3d stationary states of the free 2D-HA. The Schrédinger equation of the free (ie, unconfined) d-dimensional hydrogenic system has
the form

(~500v0 )un) - e, @

in atomic units, where ¥ =(r,81,65,...8p_1) in hyperspherical units and r=| ¥ | €[0, + o). The symbols V;d and V(r) denote the d-dimensional gradi-

ent operator and the Coulomb potential V(r') =1 respectively. It has been shown>°2! that the wavefunctions of this system are characterized by

=

the energies

and the associated eigenfunctions
g (7= Rur( )<Y ) (1), (6)

where (I, (1)) =l = py. pi2, .. pg - 1) denotes the hyperquantum numbers associated with the angular variables Q; _ = (6,, 65, ..., 84— 1), Which
may take all values consistent with the inequalities | = yy 2 pz 2 ... 2 lug—1] = |m| 2 O. The radial part of the eigenfunction is given by

—ay 172 Zim 12
4 d) [WZL-*J.(")} (2L+1)
Ry(r)=[=— et L ), 7
w0-(5) (28 A )
where 1=4,F=5Lis
L=J+$, 1=0,1,2,... (8)

and the symbol L}i“}(x) denctes the orthonomal Laguerre polynomial of degree k with respect to the weight @ (x) = x"2™ on the interval [0, co).
The angular part of the eigenfunction is given by the known hyperspherical harmonics Y, [,,;(.Qd_lj_ls‘szl
Then, the position probability density for a generic (n, |, {u}) =1, | = g1, po, ..., pa— 1) state of the free d-dimensional hydrogenic

systems is

. N 2
)= [Faa (P =RE0)x ¥y 20-0) " ©)

which is normalized so that [p(r)dr = 1.
The probability density in momentum spaces y(p) is obtained by squaring the d-dimensional Fourier transform of the configuration eigen-
function, that is, the momentum eigenfunction,'

Wty (P) = Mag(p) X Y (Qd-1), (10)
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whose radial part is

d=2

Mu(o)= (1) "y (%)i/m;u(y)ﬁﬁff_i(v). (11)

where y = (1 — %p3/(1 + 4*p?), and the symbol Cf"(x) denotes the orthonormal Gegenbauer polynomials with respect to the weight function
wl(x) = (1 —xz)”'% on the interval [-1,+1]. Then, the momentum probability density for a generic (n, I, ) =(n, I= g1, ga, ..., jia— 1) state of the free
d-dimensional hydrogenic systems is

- .2
7(B) = | Fniguy (B)] =M2(0) [Yig(@a-1)]". (12)

which is normalized so that [y(p)dp = 1.

Let us highlight that all the dispersion, entropy-like, and complexity-like, which quantify the different facets of the electron delocalization and
complexity of the free d-dimensional hydrogenic system in both position and momentum spaces, can be obtained by calculating the corresponding
expressions given in the previous section for the position and momentum densities of the system that we have just found. In particular, as

) EL rp(F)dF = I:r“*d'lRfﬂ(r)dr = 2—1” (g)uj:wzm(f) [z2 )] “pet g, (13)
we have the values.”

(ry= %[3,,2 —L(L+1)]; (r2>=%qz [57-3L(L+1)+1], (14)

so the variance V[p] = (?) — (r)? has the value
V= & [ o) 2+ 2. (15)

In addition, one can obtain the values'5354

Flp) =4(p?)-2Im|(2/+d -2)(r"2) (16)
- =il 42 (17)

for the position Fisher information of an arbitrary state (n, | = py, g, ... pg - 1) Of the system. Similar expressions can be obtained for the variance
and Fisher information of the d-dimensional hydrogen atom in momentum space.[s] Indeed, one has

1

)= (18)

and
Flr)=4(r*)—2|m|(21+d-2){p~2) (19)
=272 [5n? - 3L(L+1)— |m|(8y—6L-3)+1]: d=2. (20)

for the momentum expectation value (p?) and the momentum Fisher informations of an arbitrary state (n, /, {u}), respectively. Surprisingly, the
mean momentum expectation value (p} is not yet explicitly known for any state but only for very-high lying (ie, Rydberg) states (where the value
is x%i[f‘f‘]) and a few low-lying states of ns and circular types (see Appendix). Let us also mention that, with the previous considerations about the
variance, and as the Fisher informations of the d-dimensional probability density p(r) and the one-dimensional density p(r) are equal for
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unconfined spherically symmetrical systems, one finds that the Cramer-Rao products ({r*} — {r}*) x F[p] and ({p®} — (p)?)x Fly] are upper bounded
by unity. Moreover, the modified Cramer-Rao products () x Flp] > o2 and (p?) x Fly] = d? are also fulfilled®-8); in both cases, the minimal bound
is reached by the ground state of the d-dimensional harmonic oscillator.
Finally, from the general position expressions (15) and {17) and the corresponding ones in momentum space, we can obtain the values gath-
ered in Table 1 of the position and momentum variance and Fisher information for the 1s, 2s, 2p, and 3d quantum states of the free 2D-HA
(where d = 2). Indeed, with L=m+ # and d = 2, one has, for example,

lood a3,92 4,2 32(n-m-})
Vipl = <(2n" =4n°+ In“=5n-2m* +m* +1), Flp|= ————=~ 21
bl=5l ) Pl =y (21)

for the variance and Fisher information of any quantum state (n, m) of the free 2D-HA in position space, respectively, and
4
4 r{n+) 1 5

Viy]=——|1-——=—|, Flrl==(2n-1)"(n+2)], 22
7l (2n_1)2( wrT ) = g@- 10+ 2)] (22)

for the variance and Fisher information of any guantum state {n, n — 1) of the free 2D-HA in momentum space, respectively. See also the Appen-
dix, where you also have V[y|(2s) = % —g% ~ 0.2902. Moreover, taking into account Equation (3), the last two columns of Table 1 collect the posi-
tion and momentum Cramer-Rao complexity measures for the four states of the free 2D-HA under study.

3 | CONFINED 2D-HYDROGEN ATOM: COMPUTATIONAL METHODOLOGY

In this section, the computational methodology used to compute the electronic wavefunctions and the associated probability densities for the sta-
tionary states (n, m) of the confined two-dimensional hydrogen atom (ie, an electron moving around the nucleus in a circular region of radius rp
with impenetrable walls and the nucleus clamped at the center) in bothipasition and momentum spaces is described. This confined 2D-HA obeys
the Schradinger Equation (4) with d = 2 and T =(r.8), where r=|r |£[0,rg] and 6 & [0,2x); so, their stationary states are characterized by two
quantum numbers (n, m)withn=1,2, ..andm=0, 1, ..., n— 1. The states with m = n — 1 are usually called circular states. This equation cannot be
solved in an analytical way, except for the limiting case ry — oo, which eorresponds to the free (ie, unconfined) system already considered in Sec-
tion 2 for d(d = 2) dimensions.

To compute the eigensolutions ‘{‘},’f"} (r';a) of the Schrodinger equation of the confined 2D-HA, we have used the variational methodology
described by Aquino et al.*¥ in the two-dimensional case and by Rojas et al.,>? Marin and Cruz,[%°! Nascimento et al., 28 Rojas et al.>® and Jiao
et al.®* in the three-dimensional case. Then, we obtain

: &
(i) SRE ) S (23)

where a is a variational parameter, and the approximate radial part R};;’,_}(r;a) is given by

RS (1) = Ny (a)e ™" (@)L () (r) (24)

n-|m|-1

where the cut-off function y"*/(r) = (1—%), N, (@) denotes the normalization constant, and the optimized values of « are variationally derived.
For further details about the role of the cut-off function, we refer to some careful and systematic studies recently published.”*®> The energies of
the corresponding quantum states are numerically obtained as a function of the confinement radius rp by minimizing the functional Ela) = {¥|
H| ¥} with respect to the variational parameter a. The confinement dependence of the first few low-lying states E1p, E20, E21, and Egg is shown in
Figure 1.

We observe that, for large values of ro, these energies decrease monotonically toward their respective values for the free case. The free con-
stancy is reached for a state-dependent critical value r, of rq, having values of 2 a.u. (1s), 3 a.u. (2s, 2p), and 5 a.u. (3d). Moreover, for all guantum
states, it was found that the greater the confinement (ie, the smaller rp), the greater the energy. Note, nevertheless, that the confinement-
dependent energetic lines Exg and Es; cross each other at rp =~ 1 a.u., giving rise to the so-called (2s,3d) inversion. In fact, this is a common feature
in systems confined by cavities with impenetrable walls.

The associated wavefunctions of the confined 2D-HA system in momentum space are determined by computing the Fourier transform of the
position wavefunctions ‘I’ﬁl’;’"}(r';a) given by Equation {23), obtaining
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o) - %L o) (naleT T dr
2
1 25 . —_—
=[21)'7r RE.'?,’.("»a)f“ 0157 9} o
O\ o

which can be expressed as

°m gimd
2?2

(+]
ol @)= R nmrer, (25)

where we have taken into account the integral representation of the Bessel function, J,(z) = ﬁ,j;*e“"‘e“m“dr, and its parity property, Jo(-2) =

(=1 z).
Finally, the position and momentum probability densities of the 2D-HA are given by

2
. (26)

Prm ( r';rc.) = |‘F}_’;’,§ ( r';u) 2; 1. (p'; ro) = ‘thﬁ,’;ﬁ (p'; u)

respectively, which are the basic variables of the information theory of the confined two-dimensional hydrogenic system. They will be used to
compute the dispersion- and complexity-like quantities of the system in the next sections.

4 | VARIANCE AND CRAMER-RAO COMPLEXITY OF 2D-HYDROGENIC STATES

In this section, we study the confinement dependence of the variance, the Fisher information, and the Cramer-Rao complexity measure for the
1s, 2s, 2p, and 3d states of the confined two-dimensional hydrogenic atom in both position and momentum spaces. These measures quantify
the confinement effects on the concentration around the mean value and the gradient content of the charge and momentum delocalization of the
system in an individual and joint manner, respectively.

41 | The variance

As

o0 2
™= L P pam(Tiro) dF = L R ra) dr,
2
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FIGURE 2 Confinement dependence of the variance for the 1s, —1s I ! e el
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the variance of the probability density for a generic quantum state (n, m) of the confined 2D-HA is given by
. o 2 o 2 32
V]pam(Firo) | = J; PR dr - (J; PR (r:a)| dr) (27)
in position space and by
) ° 4 p ° 2 2
Vlran(iro)] = [ oislemn dn—(fop gtz ()| dp) (28)

in momentum space, where the symbol q';},’,‘:,} (p) denotes the radial part of the momentum eigenfunction.

In Figures 2 and 3, we show the variance for the quantum states 15, 2s, 2p, and 3d of the confined 2D-HA as a function of the confinement
radius ro in both position and momentum spaces, respectively. First, we observe that both position and momentum values for the variance
increase and decrease, respectively, to the rigorously calculated (as shown above in Table 1) free values when the confinement radius r increases,
reaching the free ones at a state-dependent critical value r, around 8 a.u{1s), 20 a.u(2p), 30 a.u(3d), and 60 a.u.(2s) in position space and around
2 a.u.(1s), 3 a.u. {2p), 5 a.u(3d), and 7 a.u. (2s) in momentum space.

Note that, in the (strong) confinement region (0, r.) the position variance has an increasing first-convex-then-concave behavior, while the
momentum variance decreases monotonically to their corresponding free constant values in a concave way. Moreover, from Figure 2, one
also observes that, for the circular states (1s, 2p, 3d), the position variances of the electron distribution not only decrease when the confine-
ment radius decreases from the critical values just mentioned, but they also cross each other; for example, the variance of the ground state
has two crossings, one with the variance of the state 2p and another one with the variance of the state 3d. In addition, the variance of the
state 3d has a crossing with the variance of each of the remaining states. From Figure 3, we realize that, for all quantum states, the greater
the confinement (ie, the smaller ry), the greater the momentum variance. This is a behavior similar to the confinement dependence of the
energy shown in Figure 1. Note, however, that the confinement effect on the momentum variance provokes three crossings at around
1.2 a.u., 1.8 a.u, and 2.7 a.u. of (1s;2p), (1s:3d), and (1s;2s) character, respectively, while in Figure 1, we only had an energy (3d;2s) inversion at
around 1 a.u.

4.2 | The Fisher information

The Fisher information for the stationary states of the confined two-dimensional hydrogenic atom, which are characterized by the position and
momentum probability densities p( r';ro) andy (p';ro), respectively, defined by Equation (26), is given™ (see also™) by
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momentum variance

Y R
Ff,(rD)=J |Vp(r,m)| d'r}: Fy(ro)=lR |V}’(P.-:O)| dp', (29)

Rz plriro

which satisfy the uncertainty relation F, x F, > 4 x 22 = 16 for the real wavefunctions of the system,["” which in our case occurs for the 15 and
25 states only. The Fisher information F(rp) for the state (n, m) of a 2D-HA is a local measure of spreading of the density ,u,,m(r';ro) because it is
a gradient functional of g, (r';ro). The higher this quantity is, the more localized the density, the smaller the uncertainty, and the higher the
accuracy in estimating the localization of the particle. Recently (see figlire 3 of Estafién et al.'*Y), the Fisher information of the 2D-HA has been
computed for the 1s, 25, 2p, and 3d states. Therein, we found that the Fisher information decreases (position) and increases {momentum) when rg
is increasing, so that they tend broadly and fast to the free values (analytically calculated in Section 2 and numerically given in Table 1) in such a
way that the Fisher information-based uncertainty relation for the 1s and 2s states is always fulfilled because they are described by real
wavefunctions.

4.3 | The Cramer-Rao complexity

The Cramer-Rao complexity measure for the stationary states of the 2D-HA, according to Equations (3) and {26), are given by

o pn (1) =l 7)o (1) 0

and

Cer[tnm(P:70) | =F[ram(Pir0) | %V [ram (Biro )] (31)

in both position and momentum spaces, respectively. These measures quantify the combined balance of the gradient content of the density jointly
with its concentration around the centroid in both conjugated spaces. So, they are statistical complexities of local-global character.

In Figures 4 and 5, we show the values of these Cramer-Rao measures for the quantum states 1s, 2s, 2p, and 3d of the confined 2D-HA as a
function of the confinement radius rp in both position and momentum spaces, respectively. First, we observe that confinement does distinguish
charge disorder and momentum complexity for the four quantum states under study. Moreover, these position and momentum measures appear
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FIGURE 5 Confinement dependence of the Cramer-Rao

complexity measure for the 1s, 2s, 2p, and 3d states of the 2D-CHA in

momentum space. Atomic units have been used
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to be lower-bounded by unity for all values of the confinement radius—that is, not only asymptotically where the system becomes unconfined—

and then this property is rigorously fulfilled as already mentioned at the end of Section 2.
Note in Figure 4 that the position Cramer-Rao measures behave differently for the four states when rg increases, although all of them tend

toward constancy when rg is sufficiently large, that is, when confinement is sufficiently weak, and then, the 2D-HA system becomes practically
free. Such a constancy is reached at 15 a.u. (or even earlier) for the circular states and at 25 a.u. for the state 2s. Above this critical confinement

radius, the Cramer-Rao measure satisfies the inequality chain

Cer[3d] < Cer([2p] < Cer[1s] < Cer[25].

Note that these constant free values for the position Cramer-Rao measure are 1.2000 (34), 1.3331 (2p), 2.0000 (1s), and 4.2220 (2s), which
coincide with the values collected in the last two columns of Table 1, which were obtained in a rigorous analytical way; this is a further check of

our numerical results.
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For stronger confinements, the situation becomes much more involved. Note that the Crdmer-Rao ordering for the circular states is altered
for values of ry less than 10 a.u., and the Cramer-Rao measure Ccg[2s] shows a minimum at around 6 a.u. because of the delicate balance of the
charge concentration around the centroid and the oscillatory character of the electron density at such a value of the confinement radius.

Similar considerations can be made from Figure 5 for the momentum Crimer-Rao complexity measures of the states 1s, 25, 2p, and 3d. Here,
again, we observe that, for all ground and excited states, this quantity tends toward the corresponding constant known free values when rg
increases (ie, when the confinement is weaker and weaker) so that it fulfils the same complexity ordering pointed out previously in position space.
This constancy is reached at 15 a. u. (or even earlier) for circular states and at 25 a.u. for the state 2s, as in position space. This behavior toward
free constancy is, of course, different for each quantum state. In the ground state, the measure smoothly increases when rg increases up until the
free constant value, which is reached at 4 a. u.. In the first excited state (2s), the momentum Cradmer-Rao complexity has a completely different
behavior with respect to the position when rg increases: the former measure has a pronounced maximum at about ro = 5 a. u., from which it oscil-
lates to the free constancy. For the circular states 2p and 3d, the values of this momentum measure smoothly vary toward the corresponding free
constant values rigorously calculated in Section 2 and collected in Table 1; note that they cross each other at rg = 6 a. u. All this suggests a strong
dependence of the Cramer-Rao complexity measure on the quantum number differencen — | m|.

For stronger confinements (eg, when rg < 10 a. u.), the previous complexity ordering changes, mainly among the momentum complexities of
the ground state and the other two circular states; this is basically because of the delicate interplay of the momentum concentration around the
centroid and the gradient content of the electron density.

5 | CONCLUSIONS

In this work, the internal disorder of the confined two-dimensional hydrogen atom is studied in a few low-lying quantum states (1s, 2s, 2p, 3d) by
means of the variance and the Cramer-Rao complexity measure in both position and momentumn spaces as a function of the confinement radius
ro. These measures, which do not depend on the energy but on the eigenfunction of the state, quantify the pointwise concentration of the elec-
tronic charge around the centroid and the combined balance of this' concentration and the gradient content of the electron density all over the
confinement region, respectively.

We have found that the position and momentum variances increase and decrease, respectively, when the confinement becomes weaker and
weaker (ie, when ry is increasing) so that, for a eritical confinement radius onward, the variances have the values of the free (unconfined) 2D-HA,
which are rigorous and analytically determined. This critical radius is bigger in position space than in momentum space for each state. Moreover,
the variances move monotonically up (in position space) and down (momentum space) without crossing, except for the ground state, to the
corresponding free values. Then, the greater the confinement (ie, the smaller rp), the smaller the position variance and the greater the momentum
variance.

We have also shown here that confinement does distinguish compilexity of the 2D-CHA for all stationary states by means of the Cramer-Rao
measure in the two conjugated spaces. These quantities tend in various ways toward the corresponding constant free values for both ground and
excited states when the confinement radius rp increases. This constancy, which is also analytically calculated, is reached at a critical confinement
radius, which is much lower for circular states than for the state 2s basically because of the bigger relative gradient content. So, this complexity
measure best detects the confinement effects when the impenetrable wall of the system is located at a gradually smaller critical radius.

The present results, together with some recent efforts on information entropies of global (Shannon, Rényi, Tsallis)®*%4% and local (Fisher,
relative Fisher)l37#244623] character for numerous excited states of three-dimensional free and confined hydrogen-like systems, illustrate how
and how much confinement is crucial not only for the energy spectrum of multidimensional hydrogen[m‘"‘] but also for its eigenfunction-
dependent information-theoretical properties that control all the chemical and physical properties.
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